博士生导师

简怀玉

  • 邮箱:hjian@tsinghua.edu.cn

    地址:北京市房山区obao欧宝娱乐 良乡主校区东区数学与统计学院

    个人简介

    现任obao欧宝娱乐 数学与统计学院教授。1994年清华大学博士毕业,20007月被被该校提为教授、20013月被聘为博士生导师。2001教育部跨世纪优秀人才称号2004-2008被选为中国工业与应用数学学会常务理事和秘书长作为高级访问学者,于20009月至20017月在哈佛大学研习几何分析。曾应邀访问意大利国际理论物理中心、比萨大学、香港科大学、香港中大学、新加坡国立大学、澳大利亚国立大学、美国斯坦福大学布朗大学、密西根大学、加州大学伯克利分校、田纳西大学、康涅狄克大学等等,进行半年以上的学术合作研究或短期讲学。曾有的主要学术兼职:意大利国际理论物理中心Associate Member、《Fronts of Mathematics in China》、《东北数学》、《中国数学进展》等学术杂志的编委。现任中国工业与应用数学学会常务理事、《应用数学学》、《纯粹数学应用数学编委

    研究兴趣

    简怀玉的研究方向是非线性偏微分方程和几何分析主要研究来源于自然科学工程技术等应用领域以及微分几何和凸几何中的非线性椭圆和抛物偏微分方程。发表了80多篇论文其中包括Amer JMathAdv inMathJ. Differential GeometryJ. Reine Angew Math (Crell)Siam J.Appl.MathSiam J.Math AnalJ Functional AnalysisiCalc Var &PDEJ. Differential EquationsIndiana Univ. Math J国际上重要杂志部分结果被一些著名数学家(其中菲尔兹获得者2人国际数学家大会1小时大会报告445分钟邀请报告9)Acta MathAnal MathJ.Amer Math SocJ.Europe Math SocAmer J.MathAdv in MathJ. Differential GeometryJ. Reine Angew Math (Crell)Comm Pure Appl MathComm Math phsyMath AnnArch Rat Mech Anal等国际一流杂志上引用.尔兹奖获得者Figalli A专著《The Moneg-Ampère equation and its applications》中用了7页篇幅(P.130-136)介绍了简怀玉与汪徐家合作发表一篇论文的方法与结论

    主讲课程

    本科生课程《数学分析》、《泛函分析《偏微分方程》《应用微分方程》《微分几何》等;

    研究生课程《现代偏微分方程《现代分析学》《几何分析》等

    习经历

    1979.91983.7:湖南师大数学系基础数学专业,理学学士;

    1985.91988.6:湖南大学应用数学系应用数学专业,理学硕士;

    1992.21994.6:清华大学数学系应用数学专业,理学博士

    工作经历

    1983.31985.8:湖南新邵一中,高中数学教师;

    1988.71992.1:湖南怀化学院数学系,讲师

    1994.71996.10:中国科学院数学研究所,博士后;

    1996.112000.6:清华大学数学系副教授;

    2000.72024.1清华大学数学系教授

    2021年1月至今,obao欧宝娱乐 数学与统计学院,教授

    其中(境)外半年以上工作经历:

    1995.08-1996.02:意大利国际理论物理中心和比萨大学访问学者;

    1996.04-1996.102012.012010.06:香港中文大学访问学者

    2000.09-2001.07:美国哈佛大学高级访问学者;

    2001.08-2002.02:美国田纳西大学研究教授;

    2004.01-2004.06:美国康涅狄克大学访问教授;

    2009.08-2010.02:新加坡国立大学访问教授;

    2006.2-2006.82010.02-2010.082014.022010.08:澳大利亚国立大学研究教授

    主要获奖荣誉

    1.2017年,清华大学优秀博士论文一等奖指导教师奖

    2.2015年,广西省科学技术自然科学二等奖(排名第二)

    3.2013年,清华大学优秀博士论文等奖指导教师奖

    4.2000年,教育部跨世纪人才荣誉称号。

    主要科研项目

    1.20222026国家自然科学科学基金重点专项项目(No.12141103),Monge-Ampere方程研究及其相关研究330万,主持人:简怀玉

    220182021国家自然科学基金面上项目(No. 11771237两类Monge-Ampere方程的研究,50万,主持人:简怀玉

    320132018国家自然科学基金重大项目(No.41390452)非常规油气介质中波传播的数学物理模型及其求解,350万,主要成员:杨顶辉,简怀玉等7

    4.20112016国家自然科学基金重点项目(No. 11131005)非线性椭圆和抛物型方程220万,主要成员:陈化,简怀玉等6

    5.20062010国家自然科学基金重点项目(No. 10631020)非线性椭圆和抛物型方程200万,主要成员:洪家兴,陈化,简怀玉等6

    6.20012004国家教育部跨世纪人才基金(No. JKH-[2001]-3)30万,主持人:简怀玉

    7.20002005国家科技部首届973项目(No. G1999075)2000万,

    主持人:姜伯驹,参与人:全国数学界约60名骨干成员.

    主要学术成果

    发表论文87篇,主要有:

    [1]Jian Huaiyu, Wang Xianduo,Sharp boundary regularity for some degerate-singularMonge-Ampère equations on K-convex domain,J. Differential Equations, 382(2024), 97-114.

    [2]Zhu Yongxing, Bao Weizhu, Jian Huaiyu,A Quantized vortex dynamics of nonlinear Schrodinger equations on torus with non-vanishing momentum,PhysicaD453(2023), 133812

    [3]Jian Huaiyu, Tu Xushan, Liouville theorem for Neumann problem of Monge-Ampère equation.J. Funct. Anal.,284(2023)109817, 1–52.

    [4]Jian Huaiyu, Wang Xianduo, Generalized Liouville theorem for viscous solutions to a singular Monge-Ampère equation.Advance in Nonlinear Anal., 12(2023): 20220284, 1–11.

    [5]Jian Huaiyu,Lu Jian,Wang Xu-Jia, Boundary expansion of solutions tononlinear singular elliptic equations. Science China Math., 65 (2022), no.1, 9-30.

    [6]Jian Huaiyu,Li You, Global regularity for minimal graphs in hyperbolic space. J. Differential Equations, 271 (2021), 963-978.

    [7]Jian Huaiyu,Lu Jian,Existence of solutions to the Orlicz-Minkowski problem.Adv. Math.,344(2019),262–288.

    [8]Jian Huaiyu,Li You,Optimal boundary regularity for a singularMonge- Ampère equation.J. Differential Equations,264(2018),no. 11,6873–6890.

    [9]Jian Huaiyu,Lu Jian,Wang Xu-Jia,A priori estimates and existence of solutions to the prescribed centroaffine curvature problem.J. Funct. Anal.274(2018),no. 3,826–862.

    [10]Jian Huaiyu,Wang Xu-Jia,Zhao Yuwen,Global smoothness for a singular Monge-Ampère equation.J. Differential Equations,263(2017),no. 11,7250–7262

    [11]Jian Huaiyu,Lu Jian,Zhu Guangxian,Mirror symmetric solutions to the centro-affine Minkowski problem.Calc.Var.Partial Differential Equations,55(2016),no. 2,Art. 41, 22 pp.

    [12]Lu Jian,Jian Huaiyu,Topological degree method for the rotationallysymmetricLp-Minkowski problem.Discrete Contin. Dyn. Syst.,36(2016),no.2,971–980.

    [13]Jian Huaiyu,Lu Jian,Wang Xu-Jia,Nonuniqueness of solutions to theLp-Minkowski problem.Adv. Math.,281(2015),845–856.

    [14]Jian Huaiyu,Wang Xu-Jia, Optimal boundary regularity for nonlinear singular elliptic equations.Adv. Math., 251(2014),111-126.

    [15]Jian Huaiyu,Wang Xu-Jia, Entire solutions of Monge- Ampère equation and translating solutions to Gauss curvature flow. American J. Math., 136 (2014), no.4, 1093-1106.

    [16] Bao Weizhu,Jian Huaiyu, Norbert J., Zhang Yong, Dimension reduction of the Schrodinger equation with Coulomb and anisotropic confining potentials. SIAM J. Appl. Math., 73(2013) no.6, 2100-2123.

    [17]Jian Huaiyu,Wang Xu-Jia, Bernstein theorem and regularity for a class of Monge-Ampère equation. J. Differential Geometry, 93(2013), 431-469.

    [18]Jian Huaiyu, Ju Hongjie, Existence of Translating solutions to the flow by the powers of mean curvature on unbounded domains. J. Differential Equations, 250 (2011), 3957-3987.

    [19] Ju Hongjie, Lu Jian, Jian Huaiyu, Translating solutions to mean curvature flow with a forcing term in Minkowski Space. Comm. Pure Appl. Anal., 9 (2010), 963-973.

    [20] Gui Changfeng, Jian Huaiyu, Ju Hongjie, Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 28 (2010) no.2,441-453.

    [21] Liu Yannan, Jian Huaiyu, Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Advanced Nonlinear Studies, 9 (2009), 513- 522.

    [22] Chen Xiuqing, Chen Li, Jian Huaiyu, Existence, Semiclassical Limit and Long-time Behavior of Weak Solution to Quantum Drift-diffusion Model. Nonlinear Analysis, Real World Application, 20 (2009), 1321-1342.

    [23] Jian Huaiyu, Liu Yannan, Long-time existence of mean curvature flow with external force field. Pacific J. Math., 234 (2008), 311-324.

    [24]Jian Huaiyu,Wang Xu-Jia, Continuity estimates for the Monge-Ampère equation. SIAM J. Math. Anal., 39 (2007), 608-626.

    [25] Jian Huaiyu, Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differential Equations, 220 (2006), 147-162.

    [26] Guan Bo, Jian Huaiyu, Schoen R., Entire spacelike convex hypersurfaces of constant Gauss curvature in Minkowski space. J. Reine Angew. Math., 595 (2006), 167-188.

    [27] Jian Huaiyu, Hessian equations with Infinite Dirichlet Boundary Value.Indiana Univ. Math. J., 55 (2006), 1045-1062.

    [28] Guan Bo, Jian Huaiyu, The Monge-Ampère equation with infinite boundary value. Pacific J. Math., 216 (2004), 77-84.

    [29] Jian Huaiyu, Song Bingheng, The Vortex dynamics of a Ginzburg-Landausystem in inhomogeneous supperconductors. J. Differential Equations, 170 (2001), 123-141.

    [30] Jian Huaiyu, On the homogenization of degenerate parabolic equations. Acta Math Appl. Sinica. New Ser., 16 (2000) no.1, 100-110.

    [31] Jian Huaiyu, Wang Xiaoping, Hsiech D. Y., The global attractor of a dissipative nonlinear system. J. Math. Anal. Appl., 238 (1999), 124-142.

    [32] Jian Huaiyu, Deforming convex hypersurfaces to the hypersurfaces with prescribed harmonic mean curvature. Sci. China Ser. A, 42 (1999) no.10, 1059-1066.

    [33] Hsiao L., Jian Huaiyu, On the asymptotic behaviour of initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity. Chinese Math. Ann. (Ser B) ,18 (1998) no.2, 143-152.

    [34] Hsiao L., Jian Huaiyu, Global smooth solutions to the spatially periodic Cauchy problem for dissipative nonlinear evolution equations. J. Math. Anal. Appl., 213 (1997), 262-274.

    Baidu
    map